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Abstract 
Background: The effects of extremely low frequency electromagnetic fields (ELF-
EMF) on Toxoplasma gondii have not been explained yet. The aim of this study was 
to assess the possible effects of ELF-EMF on growth, survival time and viability of 
Toxoplasma gondii. In addition, the life span of Toxoplasma infected animals was in-
vestigated. 

Methods: Sixty adult male BALB/c mice were used for in vivo and in vivo exper-

iments in Laboratory of Biopyhsics and Parasitology of Medical Faculty, Adnan 
Menderes University, Turkey, in 2010. During in vivo experiments, pulsed and con-
tinuous EMFs were applied for 5 d to the infected mice. During in vivo experi-
ments, pulsed and continuous EMF was applied to the tachyzoites within peritone-
al exudates for 8 h/d at 4 °C and the tachyzoites were then injected to mice. In 
both experiments, the number of T. gondii in peritoneal exudates was counted and 
T. gondii protein bands patterns were investigated with polyacrylamide gel electro-
phoresis and Western Blotting.  

Results: Pulsed and continuous EMF exposure reduced the number of T. gondii 

tachyzoites in comparison to controls. However, no statistically significant differ-
ences were observed at the patterns of protein bands among the samples.  

Conclusion: EMF exposure induces a decrease in the number of T. gondii. Fur-

ther studies are required to understand the mechanism of EMF on intracellular 
parasites. 
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Introduction  
 

oxoplasma gondii is a common intracel-
lular parasite capable of infecting al-
most all mammals, including humans 

and birds, all over the world. There are im-
portant morphological structures including 
tachyzoites, tissue cysts, and oocysts in T. 
gondii's life cycle (1). Toxoplasmosis can cause 
serious symptoms mostly in brain, especially in 
immuno-compromised or congenitally infect-
ed patients (2).  

Electromagnetic fields in different levels of 
intensity, frequency, energy and direction cre-
ate changes in the biological balance of living 
organisms (3). Electromagnetic radiation af-
fects ions (4), neurotransmitters (5), hormones 
and antibody binding sites on the surface of 
cell membrane (6). These effects alter trans-
membrane signals such as ion transport or 
electro-conformational changes of membrane 
proteins. The transmembrane signals can then 
initiate cellular processes, which result in al-
tered protein synthesis, gene transcription, and 
cell proliferation (7-8).  

Extremely low frequency (ELF) fields are 
electromagnetic fields with frequencies that 
are below 300 Hz. Power lines and electronic 
appliances are the main source of extremely 
low frequency electromagnetic fields (ELF-
EMF). In recent years, researches have been 
focused on the determination of the biological 
effects of ELF-EMF on prokaryotes, such as 
nematode, ciliates, protozoan, bacteria etc. (9-
11). Although, ELF-EMF applications (con-
tinuous or pulsed) have been shown to de-
crease growth rates at both low and high mag-
netic field values (12-14), the effects of ELF-
EMF on T. gondii have never been completely 
demonstrated yet. 

The purpose of this study was to investigate 
the effects of continuous and pulsed EMF on 
growth, survival time and viability of T. gondii. 
In addition, the protein profiles of ELF-EMF 
exposed Toxoplasma were investigated by SDS-
PAGE and Western Blotting to better under-
stand the alteration of membrane structure.  

Materials and Methods  
 
Animals 

Sixty adult male BALB/c mice (Experi-
mental Animal Center, Adnan Menderes Uni-
versity, Aydin, Turkey) weighing 25.20±0.22g 
were used in all experiments. The 12 h 
light/dark cycle was automatically controlled 
and the room temperature was thermostatical-
ly regulated to 22±1 °C. Animals had free ac-
cess to standard laboratory feed and water ad 
libitum.  

All procedures were performed with the ap-
proval of Animal Experimentation Ethics 
Committee of Adnan Menderes University. 

 
Parasites 

The tachyzoites of the RH strain of T. gondii 
were maintained by serial passages of perito-
neal exudate with five day intervals (15). At 
the time of harvesting, peritoneal exudates, 
collected freshly from infected mice, were di-
luted in 10 ml of PBS. Then, 1x105 parasites in 
PBS were inoculated intraperitoneally to the 
mice in our experimental groups (16, 17). 

 
EMF Exposure System 

Mice were simultaneously exposed either 
continuous EMF (CEMF) or pulsed EMF 
(PEMF) in north-south direction. Before and 
during the EMF applications, the EMF levels 
were measured by using a digital Gauss/ Tes-
lameter (Model 7030, F.W. Bell, Syprus, and 
Orlando, US). 

In CEMF exposure setup, 50 Hz continuous 
EMF was generated by a pair of Helmoltz 
coils, each having 154 turns, carrying a maxi-
mum of 5 amperes and having a resistance of 
2.1 ohms, separated by a distance 40 cm equal 
to the radius of the coil with maximum flux 
density for I=5 amperes in Helmholtz array of 
3.5 mT (Phywe, Germany). Picture of CEMF 
exposure setup were seen in Fig.1a.  

PEMF exposure apparatus consisting of a 
pair of Helmholtz coils were placed opposite 
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to each other and in a signal generator (Igea, 
Carpi, Italy) (Fig.1 b). The parameters of the 
pulsed signal were as follows: the pulse dura-
tion=1.3 ms, intensity of magnetic field 2.3 
mT, induced electric field= 2 mV, frequency= 

75 Hz. Experiments were carried out at nor-
mal room temperature (22±1 °C). Each expo-
sure cage was composed of plexiglass 
(10x12x10 cm) and housed five mice. 

 

 
 

Fig. 1: System for generating ELF-EMF: (a) Helmholtz coil exposure set up. (b) Pulsed EMF exposure set up 

 
Experimental procedure 

Two groups of experiments, in vitro and in 
vivo, were performed in this study. The exper-
imental procedures of these groups were ex-
plained as follows: 
 
A- In vivo study 

Tachyzoites in PBS (1x105 /ml) were inocu-
lated into thirty mice via intraperitoneal injec-
tion. The mice were then randomly divided 
into three groups: group 1 was including 10 
mice that were exposed to 50 Hz and 2 mT 
CEMF for 8 h per day for 5 d; group 2 was 
including 10 mice that were exposed to 75 Hz 
and 2.3 mT PEMF for 8 h per day for 5 days; 
and group 3 was the control group including 
10 mice that were stayed in the same experi-
mental condition for 5 d, but not exposed to 
EMF. At the end of the experiment, mice 
were sacrificed. Exudates with tachyzoites, 
collected from peritoneum of mice, were in-
vestigated with a hemacytometer and number 
of T. gondii was calculated. Then, the exudates 
were centrifuged at 3000 rpm for 5 min and 
washed with PBS five times. Numbers of 
tachyzoites in three groups were equalized to 

each other, and stored as frozen pellets at -20 
oC for using SDS-PAGE and Western blot-
ting.  

 
B- In vitro study 

RH strain tachyzoites were placed into the 
wells. Then the wells containing tachyzoites 
were randomly divided into three groups and 
each well contained approximately 1x105 
tachyzoites: in Group A, the wells were ex-
posed to 50 Hz and 2 mT CEMF for 8 h in a 
day at +4 oC; whereas in Group B; the wells 
were exposed to 75 Hz and 2.3 mT PEMF for 
8 hours in a day at +4 oC; and in control 
group (Group C), the wells were not exposed 
to EMF but stayed at +4 oC for 8 h in a day. 
After the EMF exposure, each group of 
tachyzoites was randomly inoculated intraperi-
toneally into the normal ten healthy mice. In 
order to determine the effect of EMF, the 
number of T. gondii tachyzoites in peritoneal 
fluid were counted with a hemacytometer and 
life span of the animals were determined at the 
end of the five days. Then, the exudates were 
centrifuged at 3000 rpm for 5 min and washed 
with PBS for five times. Numbers of tachyzo-
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ites in three groups were equalized to each 
other, and stored as frozen pellets at -20 oC 
for using SDS-PAGE and Western blotting. 

 
SDS-PAGE 

All the samples (n=60) were analyzed on 
SDS-PAGE gels (10% separation gel, 5% 
stacking gel). A suspension containing 1x105 

parasites per ml was mixed with an equal vol-
ume of SDS-PAGE sample buffer with 8-16% 
Tris-Glycine (Novex, US) and loaded onto 
SDS-PAGE gels. Standard molecular weight 
markers, including 14-97 kDa (Santa Cruz, 
US) were also loaded onto SDS-PAGE gels. 
Electrophoresis was carried out at 100 V (gel 
electrophoresis apparatus, BioRad). Gels were 
stained with Silver Staining Kit (SilverQuestTM, 
Invitrogen).  
 
Western blotting 

After sodium dodecyl sulfate-polyacrylamide 
gel electrophoresis, gels were applied to a 
sheet of nitrocellulose paper (0.2-pLm pore 
size) and electrophoresed for 2 h with a trans-
fer apparatus. After electrophoresis, nitrocellu-
lose paper was blocked with 3% casein (pH 
7.4) overnight at 4 °C. On the following day, 
the strips were washed three times in a solu-
tion of 1xTBS (Tris Buffer Saline). Strips were 
then incubated with sera (Toxoplasma positive 
control sample) diluted by 1:100 in 1xTBS for 
1 h at room temperature. Then, the nitrocellu-
lose was washed for three times in 1xTBS and 
incubated with anti-human IgG-alkaline phos-
phatase conjugate (Sigma) diluted by 1:1000 
for 1 hour. The strips were demonstrated with 
the chromogenic substrate nitroblue tetrazoli-
um/5-bromo-4-chloro-3-indolyl phosphate.  

 
Statistical Analysis 

Statistical analyses were conducted by SPSS 
14 software (Chicago, IL, USA). Data were 
expressed as means ± standard error of means 
(SEM) of at least three independent experi-
ments performed. Comparisons between 
groups were performed by using Kruskal-

Wallis or Mann-Whitney U test. P <0.05 were 
considered statistically significant. 

 

Results 
 
In vivo study 

The number of parasites in exudates of mice 
was lower in the CEMF-exposed group 
{Group 1, (1212.5±258.47) x104} than in the 
control group {Group 3, (1790.6±177.78) 
x104} but the decrease was not statistically 
significant (p=0.1557). Moreover, the number 
of parasites in the PEMF-exposed group 
{Group 2, (740.63±113.68) x104} was found 
to decrease significantly (P<0.01) in compari-
son to that of control group (Fig. 2). In addi-
tion, the number of parasites was observed to 
be significantly lower in Group 2 in compari-
son to Group 1 (P<0.05).  
 

 

 
 

Fig. 2: The number of T.gondii obtained from in 
vivo EMF measurements. Comparison of the ef-

fects of ELF-CEMF (50Hz, 2mT) and ELF-
PEMF (75Hz, 2.3mT) on the growth of T. gondii 

 
In vitro study 

For the tachyzoites-infected mice, the num-
ber of parasites was lower in the PEMF-
exposed group {Group B, (317.5±32.5) x104} 
than in the control group 
{(982.5±220.89)x104} (P<0.05). The number 
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of parasites was also decreased in the CEMF-
exposed group {Group A, (597.5±96.71) 
x104} in comparison to that of the control 
group (Group C), but the decrease was not 
statistically significant (P=0.4955) and no dif-
ferences were observed in the life span of the 
animals (Fig. 3). 

 
SDS-PAGE 
The results of SDS-PAGE analysis yielded 
thirty bands ranging between 6 and 120 kDa. 
The numbers of the protein bands were the 
same in different groups, which were exposed 
to ELF-EMF with different intensities and 
frequencies. There was no significant differ-
ence among all samples (n=60) when the band 
numbers and staining properties were consid-
ered (Fig. 4a, 4b). 
 
Western Blotting 

Toxoplasma-specific antibody response was 
determined and no significant differences were 
observed among the samples. Typical western 
blot patterns against T. gondii were found in all 
samples. The patterns revealed a set of major 
surface antigen reacting bands with molecular 

weights of 30 kDa (SAG1), 22 kDa (SAG2) 
and 43 kDa (SAG3), 22-30 kDa dense granu-
lar proteins and 50-70 kDa rhoptry proteins 
with some minor bands (Fig.5) (18-22). 

 

 
 

Fig. 3: The numbers of T.gondii obtained from in 
vivo ELF-EMF measurements. Comparison of the 
effects of ELF-CEMF (50Hz, 2mT) and ELF-
PEMF (75Hz, 2.3mT) on the growth of T. gondii 

 

 
 

Fig. 4:  Images of T. gondii protein bands colored with silver nitrate resolved with SDS-PAGE technique in 
the end of the (a) In vivo experiment (b) In vitro experiment 
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Fig. 5: Western blot images of control, continuous and pulsed ELF-EMF exposed groups 
 

Discussion 
 

Biological effects of ELF-EMF have been 
widely studied in various microorganisms such 
as Escherichia coli, Staphylococcus aureus, Dictyoste-
lium discoideum, Kaposi’s sarcoma-associated 
herpes virus, Entamoeba invadens, Paramecium etc. 
(23-27) however there is still lack of infor-
mation about the effects of ELF-EMF on T. 
gondii. There are no previous reports investi-
gating the effects of ELF-EMF on T. gondii, 
however the effects of EMF on other para-
sites have been reported. In this study, we ob-
served that CEMF and PEMF exposures re-
duced the proliferation rate of tachyzoites in 
vivo and their viability in vitro experiments.   

There are various ELF-EMF studies on mi-
croorganisms using different frequencies, ex-
posure time and experimental conditions. 
ELF-EMF exposure changes the growth, life 
span, viability, virulence of the microorgan-
isms (23, 28, 29). ELF-EMF exposure (1mT, 
50 Hz, 12 h) on human glioma cells increased 
the mutation rate up to 3.75-fold compared to 
unexposed controls (30). In addition, human 
fibroblast cells treated with 1mT intermittent 

ELF-EMF for 2-24 h were significantly in-
creased both chromosomal aberrations and 
micronucleus formation, and they suggested 
that intermittent ELF-EMF may lead to con-
siderable chromosomal damage in dividing 
cells (31). No reproducible changes in the 
two-dimensional gel electrophoresis were ob-
served in bacterial and yeast cells after expo-
sure to ELF-EMF (32, 33). On another study, 
the yeast cells were treated with 50 Hz 1 mT 
EMF for 60 min, however no significant ef-
fects of ELF-EMF on the yeast proteome 
were determined by using 2-D Fluorescence 
Difference Gel Electrophoresis (34). In our 
study, SDS-PAGE analysis subsequent to 
ELF-EMF application at a dose of 2 and 2.3 
mT did not appear to show a significant im-
pact on protein bands of samples taken from 
infected peritoneal exudates.  

When Rodriquez-De la et al., investigated 60 
Hz EMF effect (1, 1.5 and 2 mT) on growth 
and differentiation of E. invadens, they deter-
mined an inhibiting effect on the growth of 
trophozoite cultures. In our study, we applied 
2.3 mT of ELF-PEMF to control and T. gondii 
infected groups for a total of 8 h and demon-
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strated the statistically significant reduction of 
T. gondii number in infected group (P<0.01). 
The decrease in the number of the cells is a 
result of an affected cell cycle (26). The altera-
tions in intracellular calcium concentration 
have an impact on the signal transmission 
mechanisms affecting the genes taking part in 
growth (35). These two mechanisms may also 
help to explain the reduction in cell numbers 
in our study.  

Paramecium, a protozoon with cilia, re-
sponds to environmental stimuli by changing 
its swimming attitude (36). Mean speed of 
Paramecium directional spin number increases 
depending on EMF dose (even at 0.5-2 mT). 
This result emphasizes that even low doses of 
EMF can affect the motility of protozoa (11). 
On the other hand, 72 Hz pulse EMF expo-
sure increases paramecium cell division rate (37). 
This increase in cell division and motility of 
paramecium enables it to find host organisms, 
which in turn increase its virulence. For T. 
gondii, virulence depends on parasites gliding 
motility, host cell attachment and invasion of 
cells (37). In our study, we used the similar 
EMF dose that affects the virulence of para-
mecium; however, these EMF doses did not 
affect the virulence of T. gondii. Therefore, dif-
ferent mechanisms may play role for the viru-
lence of T. gondii. 

Delgado observed an inhibition of Lactobacil-
lus acidophillus reproductively by applying 26 
Hz and 40 Gauss (four mT) dose pulse EMF. 
Likewise, EMF shows a decrease in T. gondii 
numbers both in vitro and in vivo experiments 
even at lower doses (2 and 2.3mT) (38). Gra-
ham et al. (39) showed that growth of Drosoph-
ila melanogaster slows with the exposure of 1.5-
µT and 80-µT magnetic field, but in our study, 
50 and 75Hz EMF exposure did not make any 
change in weight of T. gondii infected mice.  

Fojt et al. (40) have exposed E. coli and S. 
aureus to 50 Hz and 10 mT EMF less than 30 
min. They have determined a decrease in col-
onizing unit number mostly in E. coli compar-
ing with control group. ELF-PEMF treatment 
(2-250 Hz; 0.5-2.5 mT) decreased the growth 

rate of S. aureus (41). Our results also revealed 
a decline in the growth rate of T. gondii after 
ELF-PEMF exposure. 

In the current study, EMF exposure also re-
sulted in a reduction in cell number revealed 
by the alterations in T. gondii number in the 
peritoneal fluid of infected mice. Similar with 
our findings, Elmusharaf et al. (42) treated the 
bird infection caused by a protozoon named 
Eimeria maxima by EMF (5 µT/30 min/day; 21 
days) and reported that EMF decreased the 
oocyst numbers of infected feces weight.  

The environmental factors can provide the 
activation of stress genes (43). Fifty Hz elec-
tric field does not affect the viability or surviv-
al rate of T. gondii infected mice, but plays an 
inhibitory role on early phase of oxidative 
stress response (44). Moreover, electric field 
was shown to have no effect on life span of T. 
gondii infected mice, in our in vitro study no 
differences were also observed in the life span 
of the animals exposed to EMF. Although no 
significant changes in protein bands were ob-
served in SDS-PAGE between two groups, 50 
Hz CEMF seemed to be ineffective in reduc-
ing the number of T. gondii tachyzoites in in-
fected mice, while 75 Hz PEMF could de-
crease the T. gondii number significantly. 
 

Conclusion 
 

Growth and viability of T. gondii were influ-
enced by the exposure to low frequency elec-
tromagnetic fields, in the studied range. The 
most remarkable finding of our study was the 
decrease in number of parasites upon EMF 
exposure. This decrease in parasite number 
may also be related to virulence of T. gondii. 
These results emphasize that EMF has some 
effects on T. gondii, but these effects should be 
investigated by further studies using advance 
molecular techniques to figure out the role of 
signaling pathways. In addition, the relation in 
between virulence and ELF-EMF exposure 
should also be explained. Besides, these kinds 
of studies may also help to elucidate the 
mechanism of EMF on living systems. 
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